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Abstract. We present an extensive empirical comparison between twenty
prototypical supervised ensemble learning algorithms, including Boost-
ing, Bagging, Random Forests, Rotation Forests, Arc-X4, Class-Switching
and their variants, as well as more recent techniques like Random Patches.
These algorithms were compared against each other in terms of threshold,
ranking/ordering and probability metrics over nineteen UCI benchmark
datasets with binary labels. We also examine the influence of two base
learners, CART and Extremely Randomized Trees, and the effect of cal-
ibrating the models via Isotonic Regression on each performance metric.
The selected datasets were already used in various empirical studies and
cover different application domains. The experimental analysis was re-
stricted to the hundred most relevant features according to the SNR filter
method with a view to dramatically reducing the computational burden
involved by the simulation. The source code and the detailed results of
our study are publicly available.

Key words: Ensemble learning, classifier ensembles, empirical perfor-
mance comparison.

1 Introduction

The ubiquity of ensemble models in Machine Learning and Pattern Recognition
applications stems primarily from their potential to significantly increase pre-
diction accuracy over individual classifier models [25]. In the last decade, there
has been a great deal of research focused on the problem of boosting their per-
formance, either by placing more or less emphasis on the hard examples, by
constructing new features for each base classifier, or by encouraging individual
accuracy and/or diversity within the ensemble. While the actual performance of
any ensemble model on a particular problem is clearly dependent on the data
and the learner, there is still much room for improvement as the comparison
between all the proposals provide valuable insight into understanding their re-
spective benefit and their differences.



There are few comprehensive empirical studies comparing ensemble learning
algorithms [1, 9]. The study performed by Caruana and Niculescu-Mizil [9] is
perhaps the best known study however it is restricted to small subset of well
established ensemble methods like random forests, boosted and bagged trees,
and more classical models (e.g., neural networks, SVMs, Naive Bayes). On the
other had, many authors have compared their ensemble classifier proposal with
others. For instance, Zhang et al. compared in [29] RotBoost against Bagging,
AdaBoost, MultiBoost and Rotation Forest using decision tree-based estimators,
over 36 data sets from the UCI repository. In [23], Rodriguez et al. examined the
Rotation Forest ensemble on a selection of 33 data sets from the UCI repository
and compared it with Bagging, AdaBoost, and Random Forest with decision
trees as the base classifier. More recently, Louppe et al. investigated a very sim-
ple, yet effective, ensemble framework called Random Patches that builds each
individual model of the ensemble from a random patch of data obtained by
drawing random subsets of both instances and features from the whole dataset.
With respect to AdaBoost and Random Forest, these experiments on 16 data
sets showed that the proposed method provides on par performance in terms of
accuracy while simultaneously lowering the memory needs, and attains signifi-
cantly better performance when memory is severely constrained. Despite these
attempts that have emerged to enhance the capability and efficiency, we believe
an extensive empirical evaluation of most of the ensemble proposal algorithms
can shed some light into the strength and weaknesses.

We briefly review these algorithms and describe a large empirical study com-
paring several ensemble method variants in conjunction with two types of un-
pruned decision trees : the standard CART decision tree and another randomized
variant called Extremely Randomized Tree (ET) proposed by Geurts et al in [13]
as base classifier, both using the Gini splitting criterion. As noted by Caruana et
al. [9], different performance metrics are appropriate for each domain. For exam-
ple Precision/Recall measures are used in information retrieval; medicine prefers
ROC area; Lift is appropriate for some marketing tasks, etc. The different perfor-
mance metrics measure different tradeoffs in the predictions made by a classifier.
One method may perform well on one metric, and worse on another, hence the
importance to gauge their performance on several performance metrics to get
a broader picture. We evaluate the performance of Boosting, Bagging, Random
Forests, Rotation Forests, and their variants including LogitBoost, VadaBoost,
RotBoost, and AdaBoost with stumps. For the sake of completeness, we added
more recent techniques like Random Patches and less conventional techniques
like Class-Switching and Arc-X4. All these voting algorithms can be divided into
two types: those that adaptively change the distribution of the training set based
on the performance of previous classifiers (as in boosting methods) and those
that do not (as in Bagging). Our purpose was not to cover all existing methods,
and we have restricted ourselves to well performing methods that have been
presented in the literature, without claiming exhaustivity, but trying to cover a
wide range of implementation ideas.



The data sets used in the experiments were all taken from the UCI Machine
Learning Repository. They represent a variety of problems but do not include
high-dimensional data sets owing to the computational expense of running Rota-
tion Forests. The comparison is performed based on three performance metrics:
accuracy, ROC Area and squared error. For each algorithm we examine com-
mon parameters values. Following [9] and [22], we also examine the effect that
calibrating the models via Isotonic Regression has on their performance.

The paper is organized as follows. In Section 2, we begin with basic nota-
tion and follow with a description of the base inducers that build classifiers.
We use two variants of decision tree inducers: unlimited depth, and extremely
randomized tree. We then describe three performance metrics and the Isotonic
calibration method that we use throughout the paper. In Section 3, we describe
our set of experiments with and without calibration and report the results. We
raise several issues and for future work in Section 4 and conclude with a summary
of our contributions.

2 Ensemble Learning Algorithms & Parameters

Before discussing the ensemble algorithms chosen in this comprehensive study,
we would like to mention that, contrary to [9] which attempted to explore the
space of parameters for each learning algorithm, we decided to fix the parameters
to their common value except for a few data dependent extra parameters that
have to be finely pretuned. The number of trees was fixed to 200 in accordance
with a recent empirical study [15] which tends to show that ensembles of size less
or equal to 100 are too small for approximating the infinite ensemble prediction.
Although it is shown that for some datasets the ensemble size should ideally be
larger than a few thousands, our choice for the ensemble size tries to balance
performance and computation cost. This shall now summarize the parameters
used for each learning algorithm below.

Bagging (Bag) [4]: Practically, Bag has many advantages. It is fast, simple
and easy to program. It has no parameters to tune. Bag is sometimes proposed
with an optimization of the bootstraps samples size to perform better. However
we fixed the default size equal to the size of the initial dataset.

Random Forests (RF) [7]: the number of feature selected at each node for
building the trees was fixed to the root square of the total number of features.

Random Patches (RadP) [19]: this method was proposed very recently to
tackle the problem of insufficient memory w.r.t. the size of the data set. The idea
is to build each individual model of the ensemble from a random patch of data
obtained by drawing random subsets of both instances and features from the
whole dataset; ps and pf are hyper-parameters that control the number of sam-
ples and features in a patch. These parameters are tuned using an independent
validation dataset. It is worth mentioning that RadP was initially designed to
overcome some shortcomings of the existing ensemble techniques in the context
of huge data sets. As such, they were not meant to outperform the other methods



on small data sets or without an memory limitation. We chosed, however, this
algorithm as an interesting alternative to Bag and RF.

AdaBoost (Ad) [11]: we used the standard algorithm proposed by Freund
and Schapire.

AdaBoost Stump (AdSt): in this particular version of Ad, the base learner
is replaced by a stump. A stump is a decision tree with only one node. While
the base learner is highly biased, when combined with AdaBoost, it is believed
to compete with the best methods while providing a serious computational ad-
vantage.

VadaBoost (Vad) [26]: this is another ensemble method called Variance Pe-
nalizing AdaBoost that appeared recently in the literature. VadaBoost is similar
to AdaBoost except that the weighting function tries to minimize both empirical
risk and empirical variance. This modification is motivated by the recent empir-
ical bound which relates the empirical variance to the true risk. Vad depends on
a hyper-parameter, λ, that will be tuned on a validation set.

Arc-X4 (ArcX4) [5]: the method belongs to the family of Arcing (Adaptive
Resampling and Combining) algorithms. It started out as a simple mechanism
for evaluating the effect of Ad.

LogitBoost (Logb) [12]: LogitBoost is a boosting algorithm formulated by
Friedman et al. Their original paper [12] casts the Ad algorithm into a statistical
framework. When regarded as a generalized additive model, the Logb algorithm
is derived by applying the cost functional of logistic regression. Note that there
is no final vote as each base classifier is not an independent classifier but rather
a correction for the whole model.

Rotation Forests (Rot) [23]: this method builds multiple classifiers on
randomized projections of the original dataset The feature set is randomly split
into K subsets (K is a parameter of the algorithm) and PCA is applied to each
subset in order to create the training data for the base classifier. The idea of
the rotation approach is to encourage simultaneously individual accuracy and
diversity within the ensemble. The size of each subsets of feature was fixed to
3 as proposed by Rodriguez. The number of sub classes randomly selected for
the PCA was fixed to 1 as we focused on binary classification. The size of the
bootstrap sample over the selected class was fixed to 75% of its size.

RotBoost (Rotb) [29]: this method combines Rot and Ad. As the main
idea of Rot is to improve the global accuracy of the classifiers while keeping
the diversity through the projections, the idea here is to replace the decision
tree by Ad. This can be seen as an attempt to improve Rot by increasing the
base learner accuracy without affecting the diversity of the ensemble. The final
decision is the vote over every decision made by the internal Ad. The parameter
setup for Rotb is the same as for Rot. In order to be fair in term of ensemble size,
we construct an ensemble consisting of 40 Rotation Forests which are learned
by Ad during 5 iterations. Hence the total number of trees is 200. This ratio has
been shown to be approximatively the empirically best in [29].

Class-Switching (Swt) [6]: Swt is a variant of the output flipping ensem-
bles proposed by Martinez-Munoz and Suarez in [21]. The idea is to randomly



switch the class labels at a certain user defined rate p. The decision of the final
classifier is again the plurality vote over these base classifiers. p will be tuned on
a validation set.

Considering the four data dependent parameters mentioned above (i.e., ps,
pf ,p and λ), we randomly split each dataset into two parts, 80% for training and
20% for validation, The later is used to search the best hyper-parameters and
is not used afterwards for training or comparison purposes (it will be discarded
from the whole data set). We then construct the ensemble on the training set
by increasing each parameters from 0.1 to 1.0. The parameters yielding the best
accuracy on the validation set are retained. It is worth noting that the other two
performance metrics (i.e., mean square error and AUC) could also be applied for
parametrization. All the above methods were implemented in Matlab - except
the CART algorithm in the Matlab statistics toolbox and the ET algorithm
in the regression tree package [13] -, in order to make fair comparisons and
also because some algorithms are not publicly available (e.g., random patches,
output switching). To make sure our Matlab implementations were correct, we
did a sanity check against previous papers on ensemble algorithms.

2.1 The decision tree inducers

As mentioned above, we use two distinct decision tree inducers: a decision tree
(CART) and a so-called Extremely Randomized Tree (ET) proposed in [13]. In
[19], Louppe and Geurts found out that every sub-sampling (samples and/or
feature) ensemble method they experimented with was improved when ET was
used as base learner instead of a standard decision tree. ET is a variant of
decision tree which aims to reduce even more the variance of ensemble methods
by reducing the variance of the tree as base learner. At each node, instead of
cutting at the best threshold among every possible ones, the method selects an
attribute and a threshold at random. To avoid very bad cuts, the score-measure
of the selected cut must be higher than a user-defined threshold otherwise it
has to be re-selected. This process is repeated until a convenient threshold is
found or until it does not remain any attribute to pick up (The algorithm uses
one threshold per attribute). According to the authors, the reducing variance
strength of his algorithm arises from the fact that threshold are selected totally
at random, contrary to preceding methods proposed by Kong and Dietterich in
[18] which select at random a threshold among the best ones or by Ho in [16]
which select the best one among a fixed number of thresholds. Therefore, we used
both unpruned DT and ET as base learners. For ET, we used he regression tree
package proposed in [13]. To distinguish ensemble with DT and ET, we added
’ET’ at the end of the algorithm names to indicate that extremely randomized
trees are used.

2.2 Performance Metrics & Calibration

The performance metrics can be splitted into three groups: threshold metrics,
ordering/rank metrics and probability metrics [8]. For thresholded metrics, like



accuracy (ACC), it makes no difference how close a prediction is to a threshold,
usually 0.5, what matters whether it is above or below the threshold. In contrast,
the ordering/rank metrics, like the area under the ROC curve (AUC), depend
only on the ordering of the instances, not the actual predicted values, while the
probability metrics, like the squared error (RMS), interpret the predicted value
of each instance as the conditional probability of the output label being in the
positive class given the input.

In many applications it is important to predict well calibrated probabilities;
good accuracy or area under the ROC curve are not sufficient. Therefore, all
the algorithms were run twice, with and without post calibration, in order to
compare the effects of calibrating ensemble methods on the overall performance.
The idea is not new, Niculescu-Mizil and Caruana have investigated in [9] the
benefit of two well known calibration methods, namely Platt Scaling and Isotonic
Regression [28], on the performance of several classifiers. They concluded that
AdaBoost and good ranking algorithms in general are those which draw the most
benefits from calibration. As expected, these benefits are the most noticeable on
the root mean squared error metric. In this paper, we only focus on Isotonic
Regression because it was originally designed for decision trees model although
Platt Scaling could also applied to decision trees. To this purpose, we use the
pair-adjacent violators (PAV) algorithm described in [28, 9] that finds a piecewise
constant solution in linear time.

2.3 Data sets

We compare the algorithms on nineteen binary classification problems of vari-
ous sizes and dimensions. Table 1 summarizes the main characteristics of these
data sets utilized in our empirical study. This selection includes data sets with
different characteristics and from a variety of fields. Among them, we find some
data sets with thousands of features. As explained by Liu in [17], if Rot or Rotb
are applied to classify such datasets, a rotation matrix with thousands of dimen-
sions is required for each tree, which entails a dramatic increase in computational
complexity. To keep the running time reasonable, we had no choice but to resort
to a dimension reduction technique for these problems; the same strategy was
adopted in several works [29, 23, 17]. Based on Liu’s comparison, we took the
best of the three proposed filter methods for rotation forest, the signal to noise
ratio [27]. SNR was used to rank all the features; we kept the 100 top relevant
features and discarded the others. Of course this choice necessarily entails some
compromises as there will generally be some loss of information. So the reader
shall bear in mind that the actual size of the data sets is limited to 100 features
in the experiments.

3 Performances analysis

In this section, we report the results of the experimental evaluation. For each
test problem, we use 5-fold cross validation (CV) on 80% of the data (recall



Table 1. Characteristics of the nineteen problems used in this study

Data sets #inst #feat #labels Reference

Basehock 1993 4862 2 [30]
Breast-cancer 699 9 2 [3]
Cleve 303 13 2 [3]
Colon 62 2000 2 [2]
Ionosphere 351 34 2 [3]
Leukemia 73 7129 2 [14]
Madelon 2600 500 2 [3]
Musk 476 166 2 [3]
Ovarian 54 1536 2 [24]
Parkinson 195 22 2 [3]
PcMac 1943 3289 2 [30]
Pima 768 8 2 [3]
Promoters 106 57 2 [3]
Relathe 1427 4322 2 [30]
Smk-Can 187 19993 2 [30]
Spam 4601 57 2 [3]
Spect 267 22 2 [3]
Wdbc 569 30 2 [3]
Wpbc 194 33 2 [3]

that 20% of each data set is used to calibrate the models and to select the best
parameters). In order to get reliable statistics over the metrics, the experiments
were repeated 10 times. So the results obtained are averaged over 50 iterations
which allows us to apply statistical tests in order to discern significant differences
between the 20 methods.

Detailed average performances of the 20 methods for all 19 data sets using the
protocol described above are reported in Tables 1-6 of the supplementary ma-
terial1. For each evaluation metric, we present and discuss the critical diagrams
from the tests for statistical significance using all data sets.

Table 2 shows the normalized score for each algorithm on each of the three
metrics. Each entry in the table averages these scores across the fifty trials and
nineteen test problems. The table is divided into two blocks to separately illus-
trate the performances for both calibrated and uncalibrated models. The last
column per block, Mean, is the mean (only for illustration purposes, not for
statistical analysis) over the three metrics (ACC,AUC, 1 − RMS) and nine-
teen problems, and fifty trials. In the table, higher scores always indicate better
performance.

Considering all three metrics together, it appears that the strongest models
among the uncalibrated ones are Rotation Forest (Rot), Rotation Forest using
extremely randomized tree (RotET), Rotboost (Rotb) and its ET-based variant

1 http://perso.univ-lyon1.fr/haytham.elghazel/copem2013-supplementary.pdf



Table 2. Average normalized scores by metric for each learning algorithm ob-
tained over nineteen test problems. We give complete results over all evaluation
metrics in supplementary material.

Approach Uncalibrated Models Calibrated Models
ACC AUC 1-RMS Mean ACC AUC 1-RMS Mean

Rot 0,865 0,903 0,700 0,823 0,837 0,864 0,673 0,791
Bag 0,823? 0,875? 0,660? 0,786 0,820? 0,844 0,649? 0,771
Ad 0,857 0,893 0,668? 0,806 0,836 0,863 0,669 0,789
RF 0,864 0,896 0,689 0,816 0,835 0,857 0,669 0,787
Rotb 0,865 0,897 0,702 0,821 0,841 0,861 0,676 0,793
ArcX4 0,852? 0,892? 0,686 0,810 0,829 0,853 0,659? 0,780
AdSt 0,833? 0,874? 0,598? 0,769 0,817? 0,845 0,653 0,771
CART 0,811? 0,809? 0,617? 0,746 0,808? 0,806? 0,622? 0,745
Logb 0,845 0,884 0,635? 0,788 0,823 0,854 0,660 0,779
Swt 0,859 0,888? 0,638? 0,795 0,829? 0,848? 0,660? 0,779
RadP 0,850 0,889 0,669? 0,803 0,836 0,851 0,662 0,783
Vad 0,858 0,894 0,684 0,812 0,839 0,864 0,671 0,791
RotET 0,871 0,901 0,698 0,823 0,843 0,858 0,675 0,792
BagET 0,836? 0,893 0,673? 0,800 0,833 0,852 0,663 0,783
AdET 0,862 0,898 0,667? 0,809 0,838 0,861 0,674 0,791
RotbET 0,866 0,900 0,704 0,824 0,844 0,859 0,678 0,794
ArcX4ET 0,868 0,901 0,693 0,821 0,842 0,859 0,673 0,791
SwtET 0,866 0,890 0,649? 0,802 0,841 0,850 0,673 0,788
RadPET 0,861 0,908 0,680 0,816 0,844 0,867 0,678 0,797
VadET 0,864 0,899 0,681 0,815 0,841 0,864 0,678 0,794

(RotbET), and ArcX4ET. Among calibrated models, the best models overall are
Rotation Forest (Rot) and its ET-based variant (RotET), Rotboost (Rotb) and
its ET-based variant (RotbET), boosted extremely randomized trees (AdET),
ArcX4ET, Vadaboost (Vad) and its ET-based variant (VadET), and Random
Patch using extremely randomized tree (RadPET). With or without calibra-
tion, the poorest performing models are decision trees (CART), bagged trees
(Bag), and AdaBoost Stump (AdSt). Looking at individual metrics, calibration
generally slightly degrades the results on accuracy and AUC and is remarkably
effective at obtaining excellent performance on the RMS score (probability met-
ric) for especially boosting-based algorithms. Indeed, calibration improves the
performance (in terms of RMS) of boosted stumps (AdSt), LogitBoost (Logb),
Class-Switching with or without extremely randomized trees (Swt and SwtEt),
and provides a small, but noticeable improvement for boosted trees with or with-
out extremely randomized trees (Ad and AdET), and a single tree (CART). If we
consider only large data sets in Tables 1-6 of the supplementary materials (i.e.
Ovarian, Smk-Can, Leukemia), reported results show that RMS values decrease
with calibration when boosting-based approaches are used, while their AUC and
ACC are not affected.



Regarding now the performances of ET-based variants of the algorithms,
across all three metrics, with or without calibration, it is observed that each
ensemble method with ET always outperforms ensembles of standard DT. This
observation confirms the results obtained in [19] and clearly suggests that using
random split thresholds, instead of optimized ones like in DT, pays off in terms
of generalization error, especially for small data sets.

In order to better assess the results obtained for each algorithm on each
metric, we adopt in this study the methodology proposed by [10] for the com-
parison of several algorithms over multiple datasets. In this methodology, the
non-parametric Friedman test is firstly used to evaluate the rejection of the hy-
pothesis that all the classifiers perform equally well for a given risk level. It ranks
the algorithms for each data set separately, the best performing algorithm get-
ting the rank of 1, the second best rank 2 etc. In case of ties it assigns average
ranks. Then, the Friedman test compares the average ranks of the algorithms
and calculates the Friedman statistic. If a statistically significant difference in
the performance is detected, we proceed with a post hoc test. The Nemenyi test
is used to compare all the classifiers to each other. In this procedure, the per-
formance of two classifiers is significantly different if their average ranks differ
more than some critical distance (CD). The critical distance depends on the
number of algorithms, the number of data sets and the critical value (for a given
significance level p) that is based on the Studentized range statistic (see [10] for
further details). In this study, the Friedman test reveals statistically significant
differences (p < 0.05) for each metric with and without calibration. As seen in
table 2, the algorithm performing best on each metric is boldfaced. Algorithms
performing significantly worse than the best algorithm at p = 0.1 (CD=6.3706)
using the Nemenyi posthoc test are marked with ’?’ next to them. Furthermore,
we present the result from the Nemenyi posthoc test with average rank diagrams
as suggested by Demsar [10]. These are given on Figure 1. The ranks are de-
picted on the axis, in such a manner that the best ranking algorithms are at the
rightmost side of the diagram. The algorithms that do not differ significantly (at
p = 0.1) are connected with a line. The critical difference CD is shown above
the graph.

As may be observed in Figure 1, ET-based variant of Rotboost (RotbET)
performs best in terms of accuracy. In the average ranks diagrams corresponding
to accuracy, two groups of algorithms could be separated. The first consists of
all algorithms which have seemingly similar performances with the best method
(i.e. RotbET). The second contains the methods that performs significantly
worse than RotbET, including Bagging (Bag) and its ET-based variant (BagET);
ArcX4, Boosted stumps (AdS) and single tree (CART).

The statistical tests we use are conservative and the differences in perfor-
mance for methods within the first group are not significant. To further support
these rank comparisons, we compared the 50 accuracy values obtained over each
dataset split for each pair of methods in the first group by using the paired
t-test (with p = 0.05) as done [19]. The results of these pairwise comparisons
are depicted (see the supplementary material) in terms of ”Win-Tie-Loss” sta-



Fig. 1. Average ranks diagram comparing the 20 algorithms in terms of three
metrics (Accuracy, AUC and RMS)
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tuses of all pairs of methods; the three values in each cell (i, j) respectively
indicate how times many the approach i is significantly better/not significantly
different/significantly worse than the approach j. Following [10], if the two al-
gorithms are, as assumed under the null-hypothesis, equivalent, each should win
on approximately N/2 out of N data sets. The number of wins is distributed ac-
cording to the binomial distribution and the critical number of wins at p = 0.1
is equal to 13 in our case. Since tied matches support the null-hypothesis we
should not discount them but split them evenly between the two classifiers when
counting the number of wins; if there is an odd number of them, we again ignore
one.

In the Table 7 (see the supplementary material), each pairwise comparison
entry (i, j) for which the approach i is significantly better than j is boldfaced.
The analysis of this table reveals that the approaches that are never beaten
by any other approach are: all the Rotation Forest-based methods (Rot, Rotb,
RotET and RotbET), AdET and ArcX4ET. We may also notice from Figure 1
and Table 8 (see the supplementary material) for accuracy on calibrated models
the following. First, the calibration is beneficial to Random Patch algorithms
(RadP and RadPET) and Bagged trees (BagET) in terms of ranking. It hurts the
ranking of boosted trees but does not affect the performances of Rotation Forest-
based methods and ArcX4ET. Overall, RotbET is ranked first, then come Rotb,
ArcX4ET and RadPET. Looking at Table 8 (see the supplementary material),
the dominating approaches include again all Rotation Forest-based methods and
ArcX4ET, as well as RadPET and VadET (c.f. Table 3). Another interesting
observation upon looking at the average rank diagrams is that ensembles of ET
lie mostly on the right side of the plot compared to their DT counterparts, hence
their superior performance.

As far as the AUC is concerned (c.f. Figure 1), RadPET ranks first. How-
ever, its performance is not statistically distinguishable from the performance
of five other algorithms: RotET, RotbET, Ad, AdET and VadET (c.f. Table 9
in supplementary material). In our experiments, ET improved the ranking of all
ensemble approaches by at least 10% on average when compared to DT. This
corroborate our previous finding, namely that ET should be preferred to DT in
the ensembles. Figure 1 and Table 10 (see the supplementary material) indicate
that calibration reduces the ranking of some approaches, especially VadET and
RotET (among the best uncalibrated approaches in terms of AUC) but slightly
improves the ranks of the approaches that adaptively change the distribution
(Logb, AdSt, Ad, Vad, Rotb, ArcX4) and Rot. This explain why equally per-
forming methods like RadPET are, after calibration, judged insignificant (c.f.
Table 3).

Regarding the RMS results reported in Figure 1 and Table 11 (see the supple-
mentary material). Rot, Rotb and RotbET significantly outperforms the other
approaches. Here again, ET-based method outperforms the DT ones by a no-
ticeable margin. We found calibration to be remarkably effective at improving
the ranking of boosting-based algporithms in terms of RMS values, especially
Ad, AdET, AdSt, Logb and VadET. This is the reason why that algorithms



Table 3. List of dominating approaches per metric, with and without calibration

Metric Without calibration With calibration

ACC
AdET, ArcX4ET, Rot, Rotb,
RotET, RotbET

ArcX4ET, Rot, Rotb,
RotbET, RotET, RadPET,
VadET

AUC
Ad, AdET, RotET, RotbET,
RadPET, VadET

Ad, AdET, ArcX4ET, Logb,
Rot, Rotb, RotbET, RadPET,
Vad, VadET

RMS Rot, Rotb, RotbET
Ad, AdET, Logb, Rot, Rotb,
RotET, RotbET, RadPET,
Vad, VadET

that adaptively change the distribution have integrated the list of dominating
approaches (c.f. Table 3).

3.1 Diversity-error diagrams

To achieve higher prediction accuracy than individual classifiers, it is crucial
that the ensemble consists of highly accurate classifiers which at the same time
disagree as much as possible. To illustrate the diversity-accuracy patterns of the
ensemble, we use the kappa-error diagrams proposed in [20]. The latter are scat-
terplots with L × (L − 1)/2 points, where L is the committee size. Each point
corresponds to a pair of classifiers. On the x-axis is a measure of diversity be-
tween the pair, κ. On the y-axis is the averaged individual error of the classifiers
in the pair, ei,j = (ei + ej)/2. As small values of κ indicate better diversity and
small values of ei,j indicate better performance; the diagram of an ideal ensem-
ble should be filled with points in the bottom left corner. Since we have a large
number of algorithms to compare and due to space limitation, we only plot the
distance between their corresponding centroids in Figure 2 for the 18 ensemble
methods (Logb and CART are excluded), for the ”Musk” and ”Relathe” data sets
only. The following is observed: (1) Rot-based algorithms outperform the others
in terms of accuracy; (2) ArcX4, Bag and RF exhibit equivalent patterns, they
are slightly more diverse but slightly less accurate than Rot-based algorithms;
(3) while boosting-based methods (AdSt, Ad, AdET) and switching are more
diverse, their accuracies are lower than the others, except SwtET as ET is gen-
erally able to increase the individual accuracy, and (4) no clear picture emerged
when one examines Random Patch-based algorithms. Not surprinsingly, as the
classifiers become more diverse, they become less accurate and vice versa. Fur-
thermore, according to the results in the previous subsection, it seems that the
more accurate the base classifiers are, the better the performance. This corrobo-
rates the conclusion drawn in [23], namely that individual accuracy is probably
the more crucial component of the tandem diversity-accuracy, contrary to the
diversifying strategies.



Fig. 2. Centroids of κ-Error Diagrams of different ensemble approaches for two
data sets. x-axis= κ, y-axis= ei,j (average error of pair of classifiers). (01)
Rot; (02) Bag; (03) Ad; (04) RF; (05) Rotb; (06) ArcX4; (07) AdSt; (08) Swt;
(09) RadP; (10) Vad; (11) RotET; (12) BagET; (13) AdET; (14) RotbET; (15)
ArcX4ET; (16) SwtET; (17) RadPET; (18) VadET.
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The kappa-error relative movement diagrams in Figure 3 display the differ-
ence between the κ and accuracy of the DT-based method and the ET-based
one. There are as many points as data sets. Points in the upper-right corner
represent datasets for which the ET-based method outperformed the standard
DT-based algorithm in terms of both diversity and accuracy, points up-left in-
dicate that ET-based method improved the accuracy but degrades diversity. We
may notice that ET as a base learner improves one criteria at the expense of the
other. Furthermore, according to the resulting win/tie/loss counts for each ET-
based approach against the DT-based one summarized in Table 4, we find that
the approaches for which the ET-variant is significantly superior to the standard
one are those for which the accuracy (i.e. Swt) or the diversity (i.e. Bag, ArcX4
and RadP) is significantly better.

Before we conclude, we would like to mention that some of the above findings
need to be regarded with caution. We list a few caveats and our comments on
these.

– The experimental analysis was restricted to the 100 most relevant features
with a view to dramatically reducing the computational burden required to
run Rotation Forest-based methods. Thus, the results reported here are valid
for data sets of small to moderate sizes. The data sets used in the experi-
ments did not include very large-scale data sets. Moreover, the complexity



Fig. 3. Centroids of κ-Error relative movement diagrams of different ensemble
approaches
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1:  1 vs. 11     2: 2 vs. 12

3:  3 vs. 13     4: 5 vs. 14

5:  6 vs. 15     6: 8 vs. 16

7:  9 vs. 17     8: 10 vs. 18

Table 4. The win/tie/loss results for ET-based ensembles vs. DT-based ensem-
bles. Bold cells indicate significant differences at p = 0.1

Approaches Uncalibrated Models Calibrated Models In Total
ACC AUC RMS ACC AUC RMS

RotET/Rot 8/8/3 11/2/6 7/6/6 6/11/2 7/8/4 8/7/4 47/42/25
BagET/Bag 11/6/2 13/4/2 13/3/3 13/5/1 12/5/2 12/6/1 74/29/11
AdET/Ad 7/10/2 7/10/2 11/4/4 6/11/2 4/8/7 6/12/1 41/55/18
RotbET/Rotb 3/12/4 6/10/3 5/11/3 3/13/3 3/11/5 4/10/5 24/67/23
ArcX4ET/ArcX4 14/5/0 13/2/4 13/1/5 10/9/0 9/7/3 14/4/1 73/28/13
SwtET/Swt 10/8/1 9/5/5 13/2/4 14/3/2 10/6/3 13/4/2 69/28/17
RadPET/RadP 9/10/0 10/7/2 14/1/4 10/7/2 12/4/3 13/4/2 68/33/13
VadET/Vad 10/7/2 9/9/1 9/5/5 6/9/4 3/11/5 7/9/3 44/50/20

issue should be addressed to balance the computation cost with the obtained
performance in a real scenario.

– We used the same ensemble size L = 200 for all methods. It is known that
bagging fares better for large L. On the other hand, AdaBoost would benefit
from tuning L. It is not clear what the outcome would be if L was treated
as hyperparameter and tuned for all ensemble methods compared here. We
acknowledge that a thorough experimental comparison of a set of methods
needs tuning each of the methods to its best for every data set and every
performance metric. Interestingly, while VadaBoost, Class-Switiching and
Random Patches were slightly favored as we tuned some of their parameters
on an independent validation set, these methods were not found to compare
favorably with Rotation Forest and its variants.



– The comparison was performed on binary classification problems solely. Mutli-
class and multi-label classification problems were not investigated. These
can, however, be turned into binomial classifiers by a variety of strategies.

4 Discussion & Conclusion

We described an extensive empirical comparison between twenty prototypical
supervised ensemble learning algorithms over nineteen UCI benchmark datasets
with binary labels and examined the influence of two variants of decision tree
inducers (unlimited depth, and extremely randomized tree) with and without
calibration. The experiments presented here support the conclusion that the
Rotation Forest family of algorithms (Rotb, RotbET, Rot and RotET) outper-
forms all other ensemble methods with or without calibration by a noticeable
margin, which is much in line with the results obtained in [29]. It appears that the
success of this approach is closely tied to its ability to simultaneously encourage
diversity and individual accuracy via rotating the feature space and keeping all
principal components. Not surprinsingly, the worse performing models are single
decision trees, bagged trees, and AdaBoost Stump. Another conclusion we can
draw from these observations is that building ensembles of extremely randomized
trees is very competitive in terms of accuracy even for small sized data sets. This
confirms the effectiveness of using random split thresholds, instead of optimized
ones like in decision trees. We found calibration to be remarkably effective at
lowering the RMS values of boosting-based methods.
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